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In this talk

� Design and control of vehicles with articulated bodies

◦ Jointed four-link model of self-propulsion via large shape changes

◦ Geometric structure of propulsive shape change strokes

◦ Efficient strokes: mechanical structure preserving optimal control code
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Locomotion model

� Symmetrical four-link model propelling from rest
◦ vortex shedding not solely responsible for locomotion, as noted by Saffman [1967]

◦ applies methods used previously on three-link carangiform fish (Kanso et al. [2005])
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Locomotion model

� example of “holonomy drive”
◦ seen in, e.g., self-propulsion of microorganisms at low Reynolds number

◦ locomotion based on sequence of shapes, not relative speed of shape change

◦ but, control effort is based on relative speed of shape change

more efficient less efficient
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Four-link flapper model

F

B1 B2 B3 B4

◦ F is assumed to be inviscid, incompressible and irrotational for all time

◦ Potential flow (u = ∇φ,∇2u = 0) with slip across solid boundaries

◦ Articulated body of four 4 rigid links Bi connected by hinge joints

◦ Bilaterally symmetric “flapping”: four links is minimum necessary for
locomotion in potential flow; allows for non-reciprocal shape changes
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Four-link flapper model
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◦ Neutrally buoyant identical links

◦ Links: slender ellipsoidal geometry with axes a, b, where b/a � 1

◦ Joints: equipped with muscles which generate torques to achieve a desired stroke

◦ g = (β, x, y), orientation, position of B3 w.r.t. {e1, e2} – net locomotion variables

◦ θ = (θ1, θ2), orientation of B1, B2, and B4 relative to B3 – shape space variables
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Solid-fluid Lagrangian L = Ts + Tf

◦ Lagrangian = solid + fluid kinetic energy,

L =

4∑
i=1

TBi
+ Tf =

1

2

4∑
i=1

ξT
i I ξi,

with ξi = (Ωi, vi)
T the velocity of the link Bi w.r.t. the Bi-fixed frame

and Iij = I, including the added inertia, is the same for all links.

◦ The Lagrange-d’Alembert variational principle yields the forced Euler-
Lagrange equations:

d

dt

(
∂L

∂ġi

)
− ∂L

∂gi
= 0, i = 1, 2, 3, (1)

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi, i = 1, 2, (2)

where the internal torques τ (t) are exerted by actuators (or muscles)
associated with the joints.
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Geometric mechanics description

g(t) = (β(t),x(t),y(t))    net locomotion variables

θ(t) = (θ1(t),θ2(t))        shape space variables
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◦ When the motion starts from rest, (1) yields

g−1ġ = −A(θ)θ̇, (3)

where g ∈ SE(2), the group of rotations and translations in R2.

◦ Given a curve θ(t) =
(
θ1(t), θ2(t)

)
, t ∈ [0, T ], we solve (3) for g(t) =

(
β(t), x(t), y(t)

)
and solve (2) for the torques τ (t)
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Stroke: closed loop in shape space

g(t) = (β(t),x(t),y(t))    net locomotion variables

θ(t) = (θ1(t),θ2(t))        shape space variables
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◦ A stroke: if θ(t) traces out a closed loop γ in shape space Θ from time 0 to T ,

g(T ) = g(0) exp

(
−

∫
S

dA(θ)

)
.

where S is the region of Θ whose boundary is the loop γ

◦ Note: independent of time parametrization of curve γ
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Net locomotion from one stroke

g(t) = (β(t),x(t),y(t))    net locomotion variables

θ(t) = (θ1(t),θ2(t))        shape space variables
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◦ i.e., net locomotion achieved, g(T )− g(0), is a function of the loop geometry only

(not on the instantaneous speeds along which the loop is traversed)
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Net locomotion from one stroke
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◦ When a flapper has completed one stroke, it is back to its original shape, but has
translated a distance D(γ)

◦ D(γ) = D([γ]) where [γ] = equivalence class of strokes w.r.t. time reparametrization
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Example stroke loops γ
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◦ simple expressions for closed curves (θ1(t), θ2(t))

15




Example stroke loops γ
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◦ simple expressions for closed curves (θ1(t), θ2(t))
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Optimal stroke loops

◦ Optimal strokes minimize the (torque) control effort per unit distance travelled

δ(γ) = W (γ)/D([γ])

where

W (γ) =

∫ T

0

|τ |2 dt,
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Optimal stroke loops

◦ Optimal strokes minimize the (torque) control effort per unit distance travelled

δ(γ) = W (γ)/D([γ])

where

W (γ) =

∫ T

0

|τ |2 dt,

◦ Approximate q(t) = (g(t), θ(t)) by a discrete path qn at tn = {0, h, 2h, . . . , Nh}
And approximate control τ (t) by discrete torques τn.

◦ Use DMOC (Discrete Mechanics & Optimal Control) algorithm of Junge, et al. [2005]

◦ Based on discretization of Lagrange D’Alembert variational principle
⇒ discrete forced Euler-Lagrange equations

◦ Preserves mechanical structure; conserves momentum
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Optimization via DMOC

◦ Search over initial curves γinit

◦ DMOC algorithm

γinit =⇒

Minimize discrete cost function

δd =
∑

n

Cd(qn, τn, tn) =
∑

n

(∑
i

τ 2
n i

)
h

subject to forced Euler-Lagrange equations

(as nonlinear equality constraints)

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + τn−1 + τn = 0

p0 + D1Ld(q0, q1) + τ0 = 0

−p1 + D2Ld(qN−1, qN) + τN−1 = 0

=⇒ γopt
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Optimization via DMOC

◦ Search over initial curves γinit

◦ DMOC algorithm

γinit =⇒

Minimize discrete cost function

δd =
∑

n

Cd(qn, τn, tn) =
∑

n

(∑
i

τ 2
n i

)
h

subject to forced Euler-Lagrange equations

(as nonlinear equality constraints)

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + τn−1 + τn = 0

p0 + D1Ld(q0, q1) + τ0 = 0

−p1 + D2Ld(qN−1, qN) + τN−1 = 0

=⇒ γopt

◦ Implemented using SQP package of Matlab

◦ With N = 100, optimization usually takes a few minutes
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Optimization via DMOC
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γinit =⇒
Minimize discrete version of δ(γ)

subject to discrete forced Euler-Lagrange eqs =⇒ γopt
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Optimization via DMOC
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Summary

◦ Developed a jointed four-link model of self-propulsion via cyclic strokes
in a 2D perfect fluid.

g(t) = (β(t),x(t),y(t))    net locomotion variables

θ(t) = (θ1(t),θ2(t))        shape space variables
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Summary

◦ Determined which stroke yields the greatest locomotive efficiency, min-
imizing the control effort (muscle activity) per unit distance traveled.
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