

### **Optimal flapping strokes for self-propulsion in a perfect fluid**

Shane Ross

Engineering Science & Mechanics, Virginia Tech

 $www.esm.vt.edu/\sim sdross$ 

ACC 2006

## In this talk

### Design and control of vehicles with articulated bodies

- Jointed four-link model of self-propulsion via large shape changes
- Geometric structure of propulsive shape change strokes
- Efficient strokes: mechanical structure preserving optimal control code

# Locomotion model

### Symmetrical four-link model propelling from rest

- vortex shedding not solely responsible for locomotion, as noted by Saffman [1967]
- applies methods used previously on three-link carangiform fish (Kanso et al. [2005])



# Locomotion model

### example of "holonomy drive"

- seen in, e.g., self-propulsion of microorganisms at low Reynolds number
- locomotion based on sequence of shapes, not relative speed of shape change
- but, **control effort** is based on relative speed of shape change



less efficient

## Four-link flapper model



- $\mathcal{F}$  is assumed to be inviscid, incompressible and irrotational for all time • Potential flow (u =  $\nabla \phi$ ,  $\nabla^2 u = 0$ ) with slip across solid boundaries
- Articulated body of four 4 rigid links  $\mathcal{B}_i$  connected by hinge joints
- Bilaterally symmetric "flapping": four links is minimum necessary for locomotion in potential flow; allows for non-reciprocal shape changes

# Four-link flapper model



- Neutrally buoyant identical links
- Links: slender ellipsoidal geometry with axes a, b, where  $b/a \ll 1$
- Joints: equipped with muscles which generate torques to achieve a desired stroke
  g = (β, x, y), orientation, position of B<sub>3</sub> w.r.t. {e<sub>1</sub>, e<sub>2</sub>} net locomotion variables
  θ = (θ<sub>1</sub>, θ<sub>2</sub>), orientation of B<sub>1</sub>, B<sub>2</sub>, and B<sub>4</sub> relative to B<sub>3</sub> shape space variables

### Solid-fluid Lagrangian $L = T_s + T_f$

• Lagrangian = solid + fluid kinetic energy,

$$L = \sum_{i=1}^{4} T_{\mathcal{B}_i} + T_f = \frac{1}{2} \sum_{i=1}^{4} \xi_i^T \mathbb{I} \xi_i,$$

with  $\xi_i = (\Omega_i, v_i)^T$  the velocity of the link  $\mathcal{B}_i$  w.r.t. the  $\mathcal{B}_i$ -fixed frame and  $\mathbb{I}_{ij} = \mathbb{I}$ , including the added inertia, is the same for all links.

• The Lagrange-d'Alembert variational principle yields the forced Euler-Lagrange equations:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{g}_i} \right) - \frac{\partial L}{\partial g_i} = 0, \qquad i = 1, 2, 3, \tag{1}$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \theta_i} = \tau_i, \qquad i = 1, 2, \tag{2}$$

where the internal torques  $\tau(t)$  are exerted by actuators (or muscles) associated with the joints.

#### **Geometric mechanics description**



 $\circ$  When the motion starts from rest, (1) yields

$$g^{-1}\dot{g} = -\mathcal{A}(\theta)\dot{\theta},\tag{3}$$

where  $g \in SE(2)$ , the group of rotations and translations in  $\mathbb{R}^2$ .

• Given a curve  $\theta(t) = (\theta_1(t), \theta_2(t)), t \in [0, T]$ , we solve (3) for  $g(t) = (\beta(t), x(t), y(t))$ and solve (2) for the torques  $\tau(t)$ 

#### Stroke: closed loop in shape space



• A stroke: if  $\theta(t)$  traces out a closed loop  $\gamma$  in shape space  $\Theta$  from time 0 to T,

$$g(T) = g(0) \exp\left(-\int_{S} d\mathcal{A}(\theta)\right).$$

where S is the region of  $\Theta$  whose boundary is the loop  $\gamma$ 

 $\circ$  Note: independent of time parametrization of curve  $\gamma$ 

#### Net locomotion from one stroke



• i.e., net locomotion achieved, g(T) - g(0), is a function of the loop geometry only (not on the instantaneous speeds along which the loop is traversed)

#### Net locomotion from one stroke



 $\circ$  When a flapper has completed one stroke, it is back to its original shape, but has translated a distance  $D(\gamma)$ 

•  $D(\gamma) = D([\gamma])$  where  $[\gamma] =$  equivalence class of strokes w.r.t. time reparametrization

#### Example stroke loops $\gamma$



• simple expressions for closed curves  $(\theta_1(t), \theta_2(t))$ 

#### Example stroke loops $\gamma$



• simple expressions for closed curves  $(\theta_1(t), \theta_2(t))$ 

#### **Optimal stroke loops**

• Optimal strokes minimize the (torque) control effort per unit distance travelled

$$\delta(\gamma) = W(\gamma)/D([\gamma])$$

where

$$W(\gamma) = \int_0^T |\tau|^2 dt,$$

#### **Optimal stroke loops**

• Optimal strokes minimize the (torque) control effort per unit distance travelled

$$\delta(\gamma) = W(\gamma)/D([\gamma])$$

where

$$W(\gamma) = \int_0^T |\tau|^2 dt,$$

- Approximate  $q(t) = (g(t), \theta(t))$  by a discrete path  $q_n$  at  $t_n = \{0, h, 2h, \dots, Nh\}$ And approximate control  $\tau(t)$  by discrete torques  $\tau_n$ .
- Use DMOC (Discrete Mechanics & Optimal Control) algorithm of Junge, et al. [2005]
- Based on discretization of Lagrange D'Alembert variational principle
   ⇒ discrete forced Euler-Lagrange equations
- Preserves mechanical structure; conserves momentum

 $\circ$  Search over initial curves  $\gamma_{\text{init}}$ 

#### • DMOC algorithm



 $\circ$  Search over initial curves  $\gamma_{\text{init}}$ 

#### • DMOC algorithm



Implemented using SQP package of Matlab

 ${\rm \circ}$  With N=100, optimization usually takes a few minutes





#### Summary

 Developed a jointed four-link model of self-propulsion via cyclic strokes in a 2D perfect fluid.



#### Summary

• Determined which stroke yields the greatest locomotive efficiency, minimizing the control effort (muscle activity) per unit distance traveled.

