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Intermittency and chaotic transitions

e.g., transitioning across “bottlenecks” in phase space; ‘metastability’

Marchal [1990]
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Multi-well multi-degree of freedom systems

• Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes

Topper [1997]

•Wells connected by phase space transition tubes ' S1×R for 2 DOF
— Conley, McGehee, 1960s
— Llibre, Mart́ınez, Simó, Pollack, Child, 1980s
— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
— Gómez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s
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Motion near saddles

� Near rank 1 saddles in N DOF, linearized vector field
eigenvalues are

±λ and ±iωj, j = 2, . . . , N
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Motion near saddles

� Near rank 1 saddles in N DOF, linearized vector field
eigenvalues are

±λ and ±iωj, j = 2, . . . , N

� Equilibrium point is of type
saddle× center× · · · × center (N − 1 centers).
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the saddle-space projection and N − 1 center projections — the N canonical planes
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Motion near saddles

� For excess energy ∆E > 0 above the saddle, there’s a
normally hyperbolic invariant manifold (NHIM) of bound
orbits

M∆E =


N∑
i=2

ωi
2

(
p2
i + q2

i

)
= ∆E



vi



Motion near saddles

� For excess energy ∆E > 0 above the saddle, there’s a
normally hyperbolic invariant manifold (NHIM) of bound
orbits

M∆E =


N∑
i=2

ωi
2

(
p2
i + q2

i

)
= ∆E


� So, M∆E ' S2N−3, topologically, a (2N − 3)-sphere

vi



Motion near saddles

� For excess energy ∆E > 0 above the saddle, there’s a
normally hyperbolic invariant manifold (NHIM) of bound
orbits

M∆E =


N∑
i=2

ωi
2

(
p2
i + q2

i

)
= ∆E


� So, M∆E ' S2N−3, topologically, a (2N − 3)-sphere

�N = 2, ω = ω2,

M∆E =
{
ω
2

(
p2

2 + q2
2

)
= ∆E

}
M∆E ' S1, a periodic orbit of period Tpo = 2π/ω
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Motion near saddles: 2 DOF

� Cylindrical tubes of orbits asymptotic to M∆E: stable and
unstable invariant manifolds, W s

±(M∆E),W u
±(M∆E),' S1×R

� Enclose transitioning trajectories
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Motion near saddles: 2 DOF

•B : bounded orbits (periodic): S1

•A : asymptotic orbits to 1-sphere: S1 × R (tubes)

•T : transitioning and NT : non-transitioning orbits.
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Tube dynamics — global picture

Poincare Section Ui

De Leon [1992]

�Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube
• Imminent transition regions, transitioning fractions

• Consider k Poincaré sections Ui, various excess energies ∆E
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— molecular reactions, ‘reaction island theory’ e.g., De Leon [1992]
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— celestial mechanics, asteroid escape rates e.g., Jaffé, Ross, Lo, Marsden, Farrelly, Uzer [2002]
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Is this geometric theory correct?

Spacecraft trajectories have been designed and flown
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Is this geometric theory correct?

• Experimental verification is needed, to enable applications

•Our goal: We seek to perform experimental verification using a table
top experiment with 2 degrees of freedom (DOF)

• If successful, apply theory to ≥2 DOF systems, combine with control:

• Preferentially triggering or avoiding transitions
— ship stability / capsize, etc.

• Structural mechanics
— re-configurable deformation of flexible objects

xii



Verification by experiment
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Verification by experiment
• Simple table top experiments; e.g., ball rolling on a 3D-printed surface

• motion of ball recorded with digital camera
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Verification by experiment
• Simple table top experiments; e.g., ball rolling on a 3D-printed surface

• motion of ball recorded with digital camera

Virgin, Lyman, Davis [2010] Am. J. Phys.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y),
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y),
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.

typical experimental trial
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Transition tubes in the rolling ball system
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Analysis of experimental data
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Experimental confirmation of transition tubes

• Theory predicts all transitions (p value of correlation < 0.0001)
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Theory for small excess energy, ∆E

• Area of the transitioning region, the tube cross-section (MacKay [1990])

Atrans = Tpo∆E

where Tpo = 2π/ω period of unstable periodic orbit in bottleneck
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• Area of the transitioning region, the tube cross-section (MacKay [1990])

Atrans = Tpo∆E

where Tpo = 2π/ω period of unstable periodic orbit in bottleneck

• Area of energy surface

A∆E = A0 + τ∆E

where

A0 = 2

∫ rmax

rmin

√
−14

5 gH(r)(1 + ∂H
∂r

2
(r))dr

and

τ =

∫ rmax
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√√√√14
5 (1 + ∂H

∂r
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(r))

−gH(r)
dr

xlvii



Theory for small excess energy, ∆E

• The transitioning fraction, under well-mixed assumption,

ptrans =
Atrans

A∆E

=
Tpo
A0

∆E
(

1− τ
A0

∆E +O(∆E2)
)
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Theory for small excess energy, ∆E

• The transitioning fraction, under well-mixed assumption,

ptrans =
Atrans

A∆E

=
Tpo
A0

∆E
(

1− τ
A0

∆E +O(∆E2)
)

• For small ∆E, growth in ptrans with ∆E is linear, with slope

∂ptrans

∂∆E
=
Tpo

A0

• For slightly larger values of ∆E, there will be a correction term leading
to a decreasing slope,

∂ptrans

∂∆E
=
Tpo

A0

(
1− 2 τ

A0
∆E
)
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Theory for small excess energy, ∆E
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Theory for small excess energy, ∆E
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Combine with control

• Since geometric theory provides the routes of transition / escape, can
combine with control to trigger or avoid transitions

•We’ll consider partial control
Sabuco, Sanjuán, Yorke [2012]; Coccolo, Seoane, Zambrano, Sanjuán [2013]

— avoid a transition in the presence of a disturbance which is larger
than the control
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Partial control - safe set S
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Partial control - safe set S

Region to be avoided in white - could include holes
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Partial control - safe set S

Control smaller than disturbance
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Ship motion and capsize

•Model built around Hamiltonian,

H = p2
x/2 + R2p2

y/4 + V (x, y),

where x = roll and y = pitch are
coupled

V (x, y)
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Ship motion and capsize

•Model built around Hamiltonian,

H = p2
x/2 + R2p2

y/4 + V (x, y),

where x = roll and y = pitch are
coupled

V (x, y)
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Tubes leading to capsize(a) (b) (c)

Poincare S-O-S, U1

transition tube

periodic orbit 

(d)

Figure 10: E↵ective potential energy V (x, y) in configuration space and the tubes leading to es-
cape.Fig. 10(b) and Fig. 10(c) show the Hill’s region and energetically forbidden realm (EFR) for
e > ecritical and e < ecritical where ecritical denotes the critical energy. The white regions are ener-
getically accessible and bounded by the zero velocity curve (the boundary of M(e)). Beyond the
zero velocity curve, the shaded region, lies the energetically forbidden region where kinetic energy
is negative and motion is impossible.

(Eqn. (11)) and apply tube dynamics (for application in celestial mechanics see Ross [2004], Koon
et al. [2000]) to organize trajectories exhibiting bounded and unbounded motion. A related tech-

10
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Partial control to avoid capsize

(a) (b)

Figure 16: Initial set and its image that defines the set on the Poincaré Surface-Of-Section we want
the dynamics to stay.

(a) Iteration # 1 (b) Iteration # 2 (c) Iteration # 3

(d) Iteration # 4 (e) Iteration # 5 (f) Iteration # 6

Figure 17: Safe set computed for a significant wave height, Hs = 0.1 m and return time to the
Poincaré Surface-Of-Section as the feedback partial control time which gives a discrete disturbance,
⇠0 = 0.277915. This system is seemingly hard to partially control as even for a small wave height,
there are no safe sets below a safe ratio ⇢0 = 0.825.
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• Safe set shown when disturbance (red) is random ocean waves and
smaller control (green) is via steering or control moment gyroscope

• Could inform control schemes to avoid capsize in rough seas
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Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

• adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors

lxx



Next steps — structural mechanics
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