Dynamical structure and its uses for insight, discovery, and control

Shane Ross (CDS '04)

Engineering Science and Mechanics, Virginia Tech

www.shaneross.com

CDS@20

Caltech, August 6, 2014

MultiSTEPS: MultiScale Transport in Environmental & Physiological Systems, IGERT www.multisteps.ictas.vt.edu

Motivation: application to data

- **Dynamical structure**: how phase space is connected / organized
- Fixed points, periodic orbits, or other invariant sets and their stable and unstable manifolds organize phase space
- Many systems defined from data or large-scale simulations
 experimental measurements, observations
- e.g., from fluid dynamics, biology, social sciences
- Other tools (probabilistic, networks) could be useful in some settings

Phase space transport in 4+ dimensions

□ Two examples

— a biomechanical system

- escape from a multi-dimensional potential well

□ Then some examples from fluids and agriculture

Flying snakes

Joint work with Farid Jafari, Jake Socha, Pavlos Vlachos

Flying snakes

Krishnan, Socha, Vlachos, Barba [2014] Physics of Fluids

Flying snakes: undulation

Krishnan, Socha, Vlachos, Barba [2014] Physics of Fluids

Flying snakes: experimental trajectories

Socha [2011] Integrative and Comparative Biology

Flying snakes: velocity space

Socha [2011] Integrative and Comparative Biology

Flying snakes: minimal model

Consider a minimal model capturing the essential coupled translational-rotational dynamics — an undulating tandem wing configuration.

Given by 4-dimensional time-periodic system

$$\dot{v}_x = u_1(\theta, \Omega, v_x, v_z, t)$$

 $\dot{v}_z = u_2(\theta, \Omega, v_x, v_z, t)$
 $\dot{\theta} = u_3(\Omega) = \Omega$
 $\dot{\Omega} = u_4(\theta, \Omega, v_x, v_z, t)$

with translational kinematics $\dot{x} = v_x$, $\dot{z} = v_z$.

System is passively stable in pitch θ with equilibrium manifold $\{\Omega = 0\}$.

Translational dynamics are more complicated, but there does seem to be a 'shallowing manifold'.

Jafari, Ross, Vlachos, Socha [2014] Bioinspir. & Biomim.

Flying snakes: achieving equilibrium glide

Flying snakes: falling like a stone

Flying snakes: separatrix behavior

saddle-node bifurcation at θ^* along shallowing manifold

Ship motion and capsize

Tubes leading to capsize

• Model built around Hamiltonian, $H = p_x^2/2 + R^2 p_y^2/4 + V(x, y),$ where x = roll and y = pitch are coupled

Tubes leading to capsize

Tubes leading to capsize

• Wedge of trajectories leading to imminent capsize

- Tubes are a useful paradigm for predicting capsize even in the presence of random forcing, e.g., random ocean waves
- Could inform **control schemes to avoid capsize** in rough seas

2D fluid example – almost-cyclic behavior

- A microchannel mixer: microfluidic channel with spatially periodic flow structure, e.g., due to grooves or wall motion¹
- How does behavior change with parameters?

¹Stroock et al. [2002], Stremler et al. [2011]

2D fluid example – almost-cyclic behavior

• A microchannel mixer: modeled as periodic Stokes flow

tracer blob ($\tau_f > 1$)

- piecewise constant vector field (repeating periodically) top streamline pattern during first half-cycle (duration $\tau_f/2$) bottom streamline pattern during second half-cycle (duration $\tau_f/2$), then repeat
- System has parameter τ_f , period of one cycle of flow, which we treat as a bifurcation parameter there's a critical point $\tau_f^* = 1$

2D fluid example – almost-cyclic behavior

Poincaré section for $\tau_f < 1 \Rightarrow$ no obvious structure!

- Poincaré map: Over large range of parameter, no obvious cyclic behavior
- So, is the phase space featureless?

Almost-invariant sets / almost-cyclic sets

- No, we can identify almost-invariant sets (AISs) and almost-cyclic sets (ACSs)¹
- Create box partition of phase space $\mathcal{B} = \{B_1, \dots, B_q\}$, with q large
- Consider a *q*-by-*q* transition (Ulam) matrix, *P*, where

$$P_{ij} = \frac{m(B_i \cap f^{-1}(B_j))}{m(B_i)},$$

the transition probability from B_i to B_j using, e.g., $f = \phi_t^{t+T}$, often computed numerically

- P approximates \mathcal{P} , Perron-Frobenius transfer operator — which evolves densities, ν , over one iterate of f, as $\mathcal{P}\nu$
- \bullet Typically, we use a reversibilized operator R, obtained from P

¹Dellnitz & Junge [1999], Froyland & Dellnitz [2003]

Identifying AISs by graph- or spectrum-partitioning

- P admits graph representation where nodes correspond to boxes B_i and transitions between them are edges of a directed graph
- Graph partitioning methods can be applied 1
- can obtain AISs/ACSs and transport between them
- spectrum-partitioning as well (eigenvectors of large eigenvalues) 2

¹Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos ²Dellnitz, Froyland, Sertl [2000] Nonlinearity

Identifying AISs by graph- or spectrum-partitioning

Top eigenvectors of transfer operator reveal structure

 ν_3

 ν_5

 ν_6

Almost-cyclic sets stir fluid like rods

• Three-component AIS made of 3 ACSs each of period 3

Almost-cyclic sets stir fluid like rods

Almost-cyclic sets, in effect, stir the surrounding fluid like 'ghost rods'

In fact, there's a theorem (Thurston-Nielsen classification theorem) that provides a topological lower bound on the mixing based on braiding in space-time

Almost-cyclic sets stir fluid like rods

Thurston-Nielsen theorem applies only to periodic points - But seems to work, even for approximately cyclic blobs of fluid¹

¹Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.

Eigenvalues/eigenvectors vs. parameter

Lines colored according to continuity of eigenvector

Eigenvalues/eigenvectors vs. parameter

Genuine eigenvalue crossings? Eigenvalues generically avoid crossings if there is no symmetry present (Dellnitz, Melbourne, 1994)

Eigenvalues/eigenvectors vs. parameter

change in eigenvector along thick red branch (a to f), as τ_f decreases.

Grover, Ross, Stremler, Kumar [2012] Chaos

Predict critical transitions in geophysical transport?

Ozone data (Lekien and Ross [2010] Chaos)

Predict critical transitions in geophysical transport?

- Different eigenmodes can correspond to dramatically different behavior.
- Some eigenmodes increase in importance while others decrease
- Can we predict dramatic changes in system behavior?
- e.g., predicting major changes in geophysical transport patterns??

Chaotic fluid transport: aperiodic setting

- Identify regions of high sensitivity of initial conditions
- The finite-time Lyapunov exponent (FTLE),

$$\sigma_t^T(x) = \frac{1}{|T|} \log \left\| D\phi_t^{t+T}(x) \right\|$$

measures the maximum stretching rate over the interval T of trajectories starting near the point x at time t

• Ridges of σ_t^T reveal hyperbolic codim-1 surfaces; finite-time stable/unstable manifolds; 'Lagrangian coherent structures' or LCSs²

² cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005

Repelling and attracting structures

• attracting structures for T < 0 repelling structures for T > 0

Repelling and attracting structures

Stable manifolds are repelling structures
Unstable manifolds are attracting structures

Peacock and Haller [2013]

Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting

2D curtain-like structures bounding air masses

 $orange = repelling \ LCSs, \ blue = attracting \ LCSs$

satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Ross & Tallapragada [2012]

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)

orange = repelling (stable manifold),

blue = attracting (unstable manifold)

orange = repelling (stable manifold),

blue = attracting (unstable manifold)

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out

Sets behave as lobe dynamics dictates

Airborne diseases moved about by coherent structures

Joint work with David Schmale, Plant Pathology / Agriculture at Virginia Tech

Coherent filament with high pathogen values

Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D

Coherent filament with high pathogen values

Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D

Laboratory fluid experiments

3D Lagrangian structure for non-tracer particles: — Inertial particle patterns (do not follow fluid velocity)

e.g., allows further exploration of physics of multi-phase flows 3

³Raben, Ross, Vlachos [2014,2015] Experiments in Fluids

Detecting causality

 Ultimate goal: detecting causality between two time series,

I would rather discover one causal law than be King of Persia. Democritus (460-370 B.C.)

Detecting causality

- We have just two time series,
 - Which signal is the driver,
 - Causality direction, $X \longrightarrow Y$ $X \longleftarrow Y$

- Direct causality vs. common external forcing,

— ...

• Signals from:

- Measurements: temperature, pressure, salinity, velocity, ...

- Maps,
- ODE's, PDE's, ...

Х

Detecting causality – cross-mapping approach

• If two signals are from a same n-D manifold, then there would be some correspondence between shadow manifolds (reconstructed phase spaces),

Estimating states across manifolds using nearest neighbors:

 If x(t) causally influences y(t) then signature of x(t) inherently exists in y(t),

$$\dot{\mathbf{y}}(t) = \bar{f}(\mathbf{x}, \mathbf{y}, ...)$$

 $y(t+1) = \overline{g}(x(t), y(t))$

• If so, historical record of y(t) values can reliably estimate the state of x $\implies \hat{x} \mid M_{1}$

Detecting causality – agricultural example

below

nonlinear state space reconstruction and convergent cross mapping

Phase space geometry — **looking forward** Many inter-related concepts

- apply to data-based finite-time settings just more interesting
- almost-invariant sets, almost-cyclic sets, braids, LCS, transfer operators, phase space transport networks, dependence on parameters, separatrices, basins of stability

Opportunities:

- use in control
- value-added way of viewing and comparing data
- detecting causality

Applications:

- agriculture, ecology
- predicting critical transitions in geophysical flow patterns
- comparative biomechanics, ...