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Motivation: application to data

•Dynamical structure: how phase space is connected / organized

• Fixed points, periodic orbits, or other invariant sets
and their stable and unstable manifolds organize phase space

•Many systems defined from data or large-scale simulations
— experimental measurements, observations

• e.g., from fluid dynamics, biology, social sciences

• Other tools (probabilistic, networks) could be useful in some settings

Using the Underlying Graph
(Froyland-D. 2003, D.-Preis 2002)

Boxes are vertices
Coarse dynamics represented by edges

Use graph theoretic algorithms in
combination with the multilevel structure
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Phase space transport in 4+ dimensions

⇤Two examples

— a biomechanical system

— escape from a multi-dimensional potential well

⇤Then some examples from fluids and agriculture
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Flying snakes

Joint work with Farid Jafari, Jake Socha, Pavlos Vlachos
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Flying snakes

Krishnan, Socha, Vlachos, Barba [2014] Physics of Fluids
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Flying snakes: undulation

Krishnan, Socha, Vlachos, Barba [2014] Physics of Fluids
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Flying snakes: experimental trajectories

Socha [2011] Integrative and Comparative Biology
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Flying snakes: velocity space

Socha [2011] Integrative and Comparative Biology
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Flying snakes: minimal model

Consider a minimal model capturing the essential
coupled translational-rotational dynamics —
an undulating tandem wing configuration.

Given by 4-dimensional time-periodic system

v̇x = u
1

(✓,⌦, vx, vz, t)

v̇z = u
2

(✓,⌦, vx, vz, t)

✓̇ = u
3

(⌦) = ⌦

⌦̇ = u
4

(✓,⌦, vx, vz, t)

with translational kinematics ẋ = vx, ż = vz.

System is passively stable in pitch ✓ with equilib-
rium manifold {⌦ = 0}.

Translational dynamics are more complicated, but
there does seem to be a ‘shallowing manifold’.

Jafari, Ross, Vlachos, Socha [2014] Bioinspir. & Biomim.
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Flying snakes: achieving equilibrium glide
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Flying snakes: falling like a stone
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Flying snakes: separatrix behavior

saddle-node bifurcation at ✓⇤ along shallowing manifold
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Ship motion and capsize
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Tubes leading to capsize

•Model built around Hamiltonian,

H = p2x/2 +R2p2y/4 + V (x, y),

where x = roll and y = pitch are
coupled

V (x, y)
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Tubes leading to capsize

Poincare
section

transition
state
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Tubes leading to capsize

•Wedge of trajectories leading to imminent capsize

wedge of escape

• Tubes are a useful paradigm for predicting capsize even in the presence
of random forcing, e.g., random ocean waves

• Could inform control schemes to avoid capsize in rough seas
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2D fluid example – almost-cyclic behavior

• A microchannel mixer: microfluidic channel with spatially periodic flow
structure, e.g., due to grooves or wall motion1

• How does behavior change with parameters?

1Stroock et al. [2002], Stremler et al. [2011]
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2D fluid example – almost-cyclic behavior

• A microchannel mixer: modeled as periodic Stokes flow

streamlines for ⌧f = 1 tracer blob (⌧f > 1)

• piecewise constant vector field (repeating periodically)
top streamline pattern during first half-cycle (duration ⌧f/2)

bottom streamline pattern during second half-cycle (duration ⌧f/2), then repeat

• System has parameter ⌧f , period of one cycle of flow, which we treat
as a bifurcation parameter — there’s a critical point ⌧⇤f = 1

xxiv



2D fluid example – almost-cyclic behavior

Poincaré section for ⌧f < 1 ) no obvious structure!

• Poincaré map: Over large range of parameter, no obvious cyclic behavior
• So, is the phase space featureless?
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Almost-invariant sets / almost-cyclic sets

• No, we can identify almost-invariant sets (AISs) and almost-cyclic
sets (ACSs)1

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , where

Pij =
m(Bi \ f�1(Bj))

m(Bi)
,

the transition probability from Bi
to Bj using, e.g., f = �t+Tt , often
computed numerically

• P approximates P , Perron-Frobenius transfer operator
— which evolves densities, ⌫, over one iterate of f , as P⌫

• Typically, we use a reversibilized operator R, obtained from P

1Dellnitz & Junge [1999], Froyland & Dellnitz [2003]
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Identifying AISs by graph- or spectrum-partitioning

Using the Underlying Graph
(Froyland-D. 2003, D.-Preis 2002)

Boxes are vertices
Coarse dynamics represented by edges

Use graph theoretic algorithms in
combination with the multilevel structure

• P admits graph representation where nodes correspond to boxes Bi and
transitions between them are edges of a directed graph

• Graph partitioning methods can be applied1

• can obtain AISs/ACSs and transport between them

• spectrum-partitioning as well (eigenvectors of large eigenvalues)2

1Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
2Dellnitz, Froyland, Sertl [2000] Nonlinearity
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Identifying AISs by graph- or spectrum-partitioning

Top eigenvectors of transfer operator reveal structure

⌫
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⌫
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Almost-cyclic sets stir fluid like rods

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs each of period 3
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Almost-cyclic sets stir fluid like rods

Almost-cyclic sets, in e↵ect, stir the surrounding fluid like ‘ghost rods’

In fact, there’s a theorem (Thurston-Nielsen classification theorem) that provides a

topological lower bound on the mixing based on braiding in space-time
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Almost-cyclic sets stir fluid like rods

(a)

(b)

(c)

(d)
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Thurston-Nielsen theorem applies only to periodic points
— But seems to work, even for approximately cyclic blobs of fluid1

1Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Eigenvalues/eigenvectors vs. parameter

Top eigenvalues of transfer operator as parameter ⌧f changes

Lines colored according to continuity of eigenvector
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Eigenvalues/eigenvectors vs. parameter

Genuine eigenvalue crossings?
Eigenvalues generically avoid
crossings if there is no symme-
try present (Dellnitz, Melbourne,

1994)
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Eigenvalues/eigenvectors vs. parameter

change in eigenvector along thick red branch (a to f), as ⌧f decreases.

Grover, Ross, Stremler, Kumar [2012] Chaos
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Predict critical transitions in geophysical transport?

Ozone data (Lekien and Ross [2010] Chaos)
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Predict critical transitions in geophysical transport?

• Di↵erent eigenmodes can correspond to dramatically di↵erent behavior.

• Some eigenmodes increase in importance while others decrease

• Can we predict dramatic changes in system behavior?

• e.g., predicting major changes in geophysical transport patterns??
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Chaotic fluid transport: aperiodic setting

• Identify regions of high sensitivity of initial conditions

• The finite-time Lyapunov exponent (FTLE),

�Tt (x) =
1
|T | log

���D�t+Tt (x)
���

measures the maximum stretching rate over the interval T of trajectories
starting near the point x at time t

• Ridges of �Tt reveal hyperbolic codim-1 surfaces; finite-time stable/unstable
manifolds; ‘Lagrangian coherent structures’ or LCSs2

2 cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005
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Repelling and attracting structures

• attracting structures for T < 0
repelling structures for T > 0

Peacock and Haller [2013]
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Repelling and attracting structures

• Stable manifolds are repelling structures
Unstable manifolds are attracting structures

Peacock and Haller [2013]
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Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting
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2D curtain-like structures bounding air masses
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Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Ross & Tallapragada [2012]
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Atmospheric flows and lobe dynamics

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
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Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
xlviii



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
l



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
li



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates
lii



Airborne diseases moved about by coherent structures

Joint work with David Schmale, Plant Pathology / Agriculture at Virginia Tech
liii



Coherent filament with high pathogen values

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007

Sampling

 location

(d) (e) (f)

(a) (b) (c)

100 km 100 km 100 km

Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D
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Coherent filament with high pathogen values

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007

(d)
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Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D
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Laboratory fluid experiments

3D Lagrangian structure for non-tracer particles:
— Inertial particle patterns (do not follow fluid velocity)

e.g., allows further exploration of physics of multi-phase flows3

3Raben, Ross, Vlachos [2014,2015] Experiments in Fluids
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Detecting causalityTime series & causality analysis 

• Ultimate goal: detecting causality between 
two time series, 
 

 

I would rather discover one causal law than be King of Persia. 
Democritus (460-370 B.C.) 

lvii



Detecting causalityTime series & causality analysis 
• We have just two time series, 

– Which signal is the driver, 
– Causality direction, 
– Direct causality vs. common external forcing, 
– … 

• Signals from: 
– Measurements:  temperature,  pressure,  salinity,  velocity,  … 
– Maps, 
– ODE’s,  PDE’s,  … 

 

 

X Y X Y 

X 

Y 

Z 
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Detecting causality – cross-mapping approachConvergent Cross Mapping (CCM) 

M_x 

M_y 

• If x(t) causally influences y(t) then 
signature of x(t) inherently exists in y(t),  

• If so, historical record of y(t) values 
can reliably estimate the state of x  

• If two signals are from a same n-D manifold, then there would be some 
correspondence between shadow manifolds (reconstructed phase spaces), 

Estimating states across manifolds 
using nearest neighbors: 

Sugihara et al. 2012 
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Detecting causality – agricultural example

DetecHng'causality'in'complex'ecosystems'

plant
above

1 m

0.1 m

  -0.1 m
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factors

atmosphere
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soil plant
below

taxon 1
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...

Population at 100 m

-5  0  5
Time around event (days)

Sugihara et al. [2012]!

Determining the causal network via 
nonlinear state space reconstruction 
and convergent cross mapping!
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Phase space geometry — looking forward
⇤Many inter-related concepts

• apply to data-based finite-time settings — just more interesting

• almost-invariant sets, almost-cyclic sets, braids, LCS, transfer oper-
ators, phase space transport networks, dependence on parameters,
separatrices, basins of stability

⇤Opportunities:

• use in control

• value-added way of viewing and comparing data

• detecting causality

⇤Applications:

• agriculture, ecology
• predicting critical transitions in geophysical flow patterns

• comparative biomechanics, ...
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