Experimental validation of phase space conduits of transition between potential wells
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Abstract. A phase space boundary between transition and non-transition, similar to those observed in chemical reaction
dynamics, is shown experimentally in a macroscopic system. We validate the phase space flux across rank one saddles
connecting adjacent potential wells and confirm the underlying phase space conduits that mediate the transition. Experimen-
tal regions of transition are found to agree with theory to within 1%, suggesting the robustness of phase space conduits of
transition in a broad array of two or more degree of freedom experimental systems, despite the presence of small dissipation.

Introduction: prediction of transition events in transient dynamics
Prediction of transition events and the determination of governing criteria has significance in many physical,

chemical, and engineering systems where rank-1 saddles are present. To name but a few, ionization of a hydrogen
atom under electromagnetic field in atomic physics, transport of defects in solid state and semiconductor physics,
isomerization of clusters, reaction rates in chemical physics, buckling modes in structural mechanics [1], ship
motion and capsize [2], and escape and recapture of comets, asteroids, and spacecraft in celestial mechanics [3].
The theoretical criteria of transition and its agreement with laboratory experiment have previously been shown for
1 degree of freedom (DOF) systems. Detailed experimental validation of the geometrical framework for predicting
transition in higher dimensional phase space (> 4, i.e., for 2 or more DOF systems) is still lacking. The geometric
framework of phase space conduits in such systems, termed tube dynamics [3] has not before been demonstrated
in a laboratory experiment. Here we present a direct experimental validation of the accuracy of the phase space
conduits, as well as the transition fraction obtained as a function of energy, in a 4 dimensional phase space using
a laboratory experiment of a macroscopic system, with implications for other mechanical systems.

Our setup consists of a mass rolling on a multi-well surface [4], Fig. 1(a), that is representative of potential
energy underlying systems that exhibit transition/escape behavior. The equations of motion are obtained from
the Lagrangian; L(z,y,%,y) = T(z,y,2,y) — V(x,y). The kinetic energy (translational plus rotational for a
ball rolling without slipping) is, T'(z,y,4,9) = 3 () (&% + ¢ + (Hy@ + Hyy)?) and the potential energy is
V(z,y) = gH(x,y), where H(z,y) is the height function for the multi-well surface and ¢ is the acceleration
due to gravity. Small damping is present, but over short time-scales, the motion approximately conserves energy,
and the conservative dynamics are the dominant contributor to transition between wells. Let M (E) be the energy
manifold given by setting the energy integral (£(z,y, vz, vy) = T'(x,y,4,9) + V(x,y)) equal to a constant, i.e.,
M(E) = {(z,y,vz,vy) C R* | E(x,y,vs,v,) = E} where E € R is a constant. The projection of the energy
manifold onto configuration space, the (z,y) plane, is the region of energetically possible motion for a ball of
energy E, M(E) = {(z,y) | V(z,y) < E}. The zero velocity curves are the boundary of M (E) and are the
locus of points in the (x,y) plane where the kinetic energy vanishes. The ball’s state is only able to move on the
side of this curve where the kinetic energy is positive, shown in white in Fig. 1(c) (the left panel). The critical
energy of escape, I, is the same as the energy of the saddle points in each bottleneck (which are all equal), and
divides the global behavior into two cases, according to the sign of excess energy, AE = E — E,:

Case 1, AE < 0 : the ball is safe against escape since potential wells are not energetically connected.
Case 2, AE > 0 : ‘bottlenecks’ between all the potential wells open up around the saddle points, permitting the

ball to move between any two adjacent wells (e.g., Fig. 1(c) shows this case).
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Figure 1: (a) Experimental apparatus showing the machined surface (b) An experimental trajectory, shown in white, on the potential energy
surface where the contours denote isoheights. Release from rest is marked by a red cross. (c) For a fixed energy E above a critical value E.
(i.e., AE > 0), the permissible region (in white) has potential wells connected by bottlenecks around saddle-type equilibria. All motion
from quadrant 1 to quadrant 2 must occur through the interior of a stable manifold tube associated to a periodic orbit in the bottleneck
between them (video: https://youtu.be/gMqrFX2JkLU). Example transition (red) and non-transition (blue) trajectories are shown.



Tube dynamics and the transition fraction
Within a given potential well, there are phase space conduits leading to escape/transition to a different potential
well which are cylindrical manifolds or tubes, as shown in Fig. 1(c). Based on these tubes, we can calculate the
fraction of energetically permissible trajectories which will transition from/into a given well by calculating the
transition rate of trajectories crossing the rank-1 saddle in the bottleneck connecting the wells. For computing this
rate—surface integral of trajectories crossing a bounded surface per unit time—we use the geometry of the tube
manifold cross-section on the Poincaré section U;. For low excess energy, we employ the theory of flux over a
rank-1 saddle [?], which corresponds to the action integral around the periodic orbit of period T}, at energy AE.
The transition fraction is given in 2 DOF to leading order in AE by pirans = %AE where A is the symplectic
area of the energy surface as it intersects the Poincaré section at energy AE = (. For small positive excess energy,
the predicted growth rate for our system is Tpo/A &~ 0.87 x 1073 (s/cm)?.
Experimental results

Dynamics on the Poincaré section are best written in polar coordinates; U, = {(r,p,) | 0 = 7, sign(py) = —1}.
We take Poincaré sections of 120 experimental trajectories to reveal the tube cross-sections. We determine the
instantaneous A E for every point on the Poincaré section U; , and consider narrow ranges of AE to approximate
a single energy manifold. In Fig. 2(a) we see an example of the Poincaré section U; for all intersections in the
energy range 40 < AE < 140 (cm/ s)2. The intersection points which are about to transition from quadrant 1 to
2, determined by following the experimental trajectories forward in time, and are marked with red circles.
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Figure 2: (a) On the Poincaré section U;  we show a narrow range of energy (AE € (40, 140) (cm/ 5)2) and label intersecting trajectories
as no transition (black) and imminent transition (red) to quadrant 2, based on their experimentally measured behavior. The theoretical tube

cross-section leading to transition at excess energy AE = 140 (cm/s)? intersects U; along the blue curve. Its interior is shown in cyan
and includes the experimental transition trajectories. The outer closed curve (magenta) is the boundary of the energy surface M(AFE)

on U; . See video: https://youtu.be/YZKYxON9Zug (b) Transition fraction of trajectories as a function of excess energy. The theoretical
result is shown (blue curve) and experimental values are shown as filled circles (black) with error bars. For small excess energy above

critical, the transition fraction shows linear growth (see inset) with slope 1.0 + 0.23 x 1072 (s/cm)?, in agreement with the analytical
result. (c¢) The two dominant degrees of freedom of the shallow arch, symmetric and asymmetric modes, represented by coordinates X
and Y, resp. (d) In the shallow arch model, the transition tube from the left well to the right well with damping present is shown.

Connection with structural mechanics: the buckled beam model example
The laterally-loaded, mildly buckled, beam (or moderately shallow arch) is an archetypal nonlinear structural
system in mechanics [1] (Fig. 2(c)). The trivial equilibrium and its snapped-through counterpart are potential
energy minima. For a range of geometries, a 2 DOF model (symmetric and asymmetric modes, Fig. 2(c)) captures
the main behavior, and shows the energetically expedient dynamic transitions as trajectories are influenced by the
lowest energy unstable equilibria in passing through (or not) to the snapped-through configuration, as in Fig. 2(d).

Conclusions
The transitioning points at each energy interval are found to be within the theoretical tube boundary (blue curve);
asin, e.g., Fig. 2(a). Furthermore, the fraction of transitioning trajectories increases linearly with A F, Fig. 2(b), as
expected from arguments related to the phase space flux over a rank-1 saddle [4], and agreement between observed
and theoretical values is within experimental error. This experimental validation of tube dynamics establishes a
framework which can be exploited for control, e.g., avoiding or triggering transition between metastable states in
systems of 2 or more degrees-of-freedom [4, 1, 2]. The authors acknowledge NSF grants 1537349 & 1537425.
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